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ABSTRACT Protein-folding codes embodied in sequence-
dependent energy functions can be optimized using spin-glass
theory. Optimal folding codes for aociative-memory Hamil-
tonlans based on aligned sequences are deduced. A screening
method based on these codes correctly recognzs protein
structures in the "tight zone" of sequence identity in the
overwhelming majority of cases. Simulated al for the
optimally encoded Hamiltonian generally leads to qualitatively
correct structures.

The problem of protein-structure prediction from sequence
has been described as the determination of the second half of
the genetic code (1). Unlike the code translating DNA
sequences into amino acid sequences, the mathematical
structure of the folding code remains problematic because of
the differing character of sequential and structural informa-
tion. Although it is conceivable that a strictly deterministic
local code exists, there is considerable evidence that the
folding code is fuzzy and nonlocal. A particularly simple
representation of a class of codes is provided by the asso-
ciative-memory Hamiltonians introduced by Friedrichs and
Wolynes (2). The associative-memory Hamiltonian encodes
correlations between the sequence of the target protein
whose structure is to be determined and a set of memory
proteins {A} as well as the structures of the memory proteins
through sets of pair distances. Minimization of the associa-
tive-memory Hamiltonian yields the predicted structure of
the target protein. The associative-memory Hamiltonians
resemble empirical energy functions long used for proteins,
but their form was motivated by the theory of neural net-
works (3). This allows the use of the ideas developed for
pattern recognition by neural networks and thermodynamic
formulations of information processing based on spin-glass
theory. Many aspects of the relevance of spin-glass theory to
folding phenomenology have already been explored (4-9). In
this paper we show how spin-glass theory can be used to
optimize associative-memory Hamiltonians and lead to a
characterization of optimal protein-folding codes.
When sequence homology of a new protein with a protein

of known structure is high, standard alignment techniques
allow the prediction of structure. The exact degree of ho-
mology necessary to make the inference depends upon stan-
dards ofhomology and structural similarity but is in the range
of 25-40o sequence identity (10, 11). Below this limit, a
"twilight zone" emerges in which sequence homology does
not imply structural similarity (11). Our method of searching
for optimal protein-folding codes focuses on the twilight zone
of sequence identity.
We use a random-energy approximation to the thermody-

namics of associative-memory Hamiltonians (4, 5). Finding
which ofthe configurations ofthe memory-protein structures
is the most stable leads to a screening method for recognizing
protein structures. In contrast to other approaches (12-14),

the screening method directly discriminates between many
structures in determining the assignment. Optimal protein-
folding codes, deduced for proteins characterized by struc-
tural class, are very successful in such a screening procedure.
A stringent test of the energy function is provided by

molecular dynamics. Energy functions based on optimal
codes usually lead to minima recognizably similar to the
correct protein structures. In some cases the similarity is
extraordinarily good, while in others there is overcollapse in
sections of the protein leading to structures with reasonably
good distance matrices but with stereochemical irregulari-
ties. These results are described below.

Code Optimization Using the Random-Energy
Approximation

In its simplest form, the associative-memory (AM) Hamilto-
nian as a function of the pairwise distance between the
a-carbons of residues i and j, re, has the form

NAM =-E Y2 O(rU -rr) + No.
AL i<j u

[1]

Ay' encodes a degree of similarity between residues i andj of
the target protein and memory protein ,u. 0(rv - rl) is a
Gaussian function of the difference between the pairwise
distance in the target structure and the memory structure,
and W. is a typical chain molecule Hamiltonian for the
backbone atoms. Various forms of backbone Hamiltonian
have been investigated (15). The form of yt may include
information about the probability of mutation of the various
residues in the pair ij, their physicochemical properties, or
the context of the residues in the protein as represented by
predicted secondary structure (15). As there may be inser-
tions and deletions in the target sequence compared with the
memory protein, the sequence number i andj of correspond-
ing residues may differ. In this paper, we use standard
alignment techniques to match corresponding residues, al-
though other methods of generalization have been used (15).
The alignment indicates which residues, designated i' and j',
are related to i and j in the target protein. For aligned
sequences, yu in Eq. 1 is replaced by Vy!ir and rt is replaced
by rj',. Prealigning the sequences induces correlations be-
tween the sequences and structures of the target protein and
the unrelated memories, invalidating the intuition behind our
prior choices for folding codes and necessitating folding-code
optimization.
The phase diagram of the generic associative-memory

Hamiltonian has been studied by Sasai and Wolynes (16).
This reveals the underlying competition between two differ-
ent phase transitions. If the data base of structures used to
develop the code is small and the association between the
sequence of the protein to be folded and an example is high,
the minimization of the associative-memory Hamiltonian by
molecular dynamics will lead to a first-order phase transition
at a folding temperature, Tf. On the other hand if the number

Abbreviation: Brookhaven PDB, Brookhaven Protein Data Bank.
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of different possible structures is large and the relationship of
sequences is small, the energy landscape is rough, and the
system undergoes a thermodynamic glass transition at a
temperature Tg. Close to Tg the protein dynamics is slow and
simulated annealing fails. A reasonable figure of merit for a
particular y is the ratio of the folding temperature to the glass
transition temperature, Tf/Tg. This ratio should be large so
that annealing can be carried out at high temperature, where
the trapping in local minima will not be important. Conve-
nient approximations to Tf/Tg allow the rapid search through
possible choices of y. Maximizing Tf/Tg is a practical imple-
mentation of the principle of minimal frustration (4).
A simple analysis of the competition between folding and

the glass transition can be made by using the random-energy
approximation (4, 5). In this approximation, the energy levels
of the liquid-like states of the protein are defined as random
and correlations between states are neglected. According to
Bryngelson and Wolynes, the distribution of energy levels
will depend on the fraction of native structure. Their analysis
can be simplified if we assume that the liquid-like state has
virtually no native structure, while the folded state is nearly
perfect. The entropy of the folded state may then be ne-
glected. However, the liquid-like phase has high entropy SO
and a wide standard deviation of energies, BE. To a first
approximation, the folding temperature is given by

Tf =
AE + (AE2 - /2

[2]
2SO

where AE is the average energy difference between the folded
and liquid-like states.
The glass transition occurs when the entropy difference

between the folded and unfolded states vanishes. In this
model, the transition temperature, Tg, is given by Tg =
(BE2/2SO)1/2. One can then show that Tf/Tg is maximized
when A = AE/8E is maximized.

If the structures in the liquid state are minima for No, AE
is linear in y while 5E2 is quadratic in y, or in matrix form AE
= Ay and BE2 = yBy. Apparently the maximization of A
presents a nonlinear problem with possible multiple minima,
but since y is arbitrary up to multiplication by a constant, the
maximization of Tf/Tg leads to the explicit form for y:y =
B-1A.
A and B may be evaluated for any choice offunctional form

for 'y, given correct structures and liquid-like model struc-
tures. Various forms for y can be compared based on
resulting values of A.

Results

Optimal Codes Based on Hydrophobicity. The result of the
random-energy model for y is reminiscent of the pseudo-
inverse approximations in feed-forward neural nets (17). Just
as there, simple forms of y are the best for generalization. In
this paper we discuss results obtained using the association
constants dependent only on the hydrophobicity of the res-
idues in the target and example proteins and on the distances
between the residues. We use a binary representation of the
Eisenberg consensus hydrophobicity scale to label the se-
quence (18) as described earlier (2, 15, 19).

In the first code, y is independent of distance, resulting in
a Hamiltonian dominated by long-range interactions. In ad-
dition, we construct a y vector in which independent y values
are assigned to residues close in sequence (j - i < 5) and
close in space (rij < 8, j - i > 5).
We used the x-ray coordinates of a set of proteins between

10o and 50o larger than the target protein, including all
possible translations along the sequence, to model the liquid-
like states. The average and variance of the energy of the

target protein in these configurations is used to calculate A
and B.
A set of 123 target proteins 50-250 residues long, chosen

from the Brookhaven Protein Data Bank (PDB), was pre-
pared (20, 21). These target proteins were aligned to a data set
of 185 proteins and protein subunits having well-defined
structures. The alignments were obtained by using the Best-
Fit algorithm of the Genetics Computer Group (GCG; Mad-
ison, WI) package with default specifications (22). For each

Table 1. Predictions with the screening method
Protein PDB % I q

a-helix
Human fetal hemoglobin
Sickle-cell hemoglobin
Sickle-cell hemoglobin
Sea-hare myoglobin
Phage 434 repressor
Phage 434 Cro protein
Human hemoglobin
Human hemoglobin
Lupine leghemoglobin
Sea lamprey hemoglobin
P. aeruginosa cytochrome 551
R. rubrum cytochrome C2
Bovine Ca-binding protein
Tuna cytochrome c
Sperm whale myoglobin

Mouse R19.9 Fab fragment
Mouse R19.9 Fab fragment
Human Rhinovirus coat
Human Bence-Jones fragment
Human Fab fragment
Human Fab fragment
Mouse IgA Fab fragment
Monkey mengovirus coat
Monkey mengovirus coat
Human Poliovirus coat
Human Bence-Jones fragment
Mouse IgG1 Fab fragment
Mouse IgG1 Fab fragment
Human histocompatibility Ag
Mouse IgG2 Fab fragment
Mouse IgG2 Fab fragment
Human Rhinovirus 14 coat
Poplar plastocyanin

3-shee

1FDH(G)
1HDS(A)
1HDS(B)
1MBA
lR69
2CRO
2HHB(A)
2HHB(B)
2LH4
2LHB
351C
3C2C
3ICB
5CYT
5MBN

:t
lF19(H)
lF19(L)
lRlA(3)
1REI(A)
2FB4(H)
2FB4(L)
2FBJ(L)
2MEV(2)
2MEV(3)
2PLV(3)
2RHE
3HFM(H)
3HFM(L)
3HLA(B)
4FAB(H)
4FAB(L)
4RHV(3)
5PCY

27.90
32.80
28.40
32.60
28.60
16.40
35.90
26.50
23.60
35.90
28.00
40.00
32.30
40.00
27.90

29.60
26.20
34.20
30.20
31.40
31.40
26.20
37.10
34.20
32.40
30.90
26.20
27.70
26.50
28.10
25.70
27.00
25.80

0.70
0.64
0.78
0.53
0.67
0.46
0.78
0.70
0.52
0.67
0.51
0.67
0.49
0.79
0.70

0.44
0.52
0.70
0.69
0.51
0.57
0.52
0.63
0.73
0.60
0.59
0.42
0.43
0.65
0.51
0.43
0.70
0.55

Mixed category
Baboon a-lactalbunin 1ALC 38.70 0.80
D. vulagis flavodoxin 1FX1 31.10 0.62
Human lysozyme 1LZ1 38.70 0.70
Human DHFR 2DHF(A) 31.20 0.55
Hen lysozyme 2LYZ 37.20 0.74
B. subtilis eglin C 2SEC(1) 35.50 0.82
Barley chymotrypsin inhibitor 2SNI(I) 37.10 0.74
L. casei DHFR 3DFR 30.60 0.74
Cl. MP flavodoxin 3FXN 31.10 0.70
E. coli DHFR 4DFR(B) 34.00 0.72
Chicken DHFR 8DFR 34.00 0.45

Results of the screening method with structuraly dependent hy-
drophobicity/proximity codes. The Brookhaven PDB designation
with substrand identity in parentheses is listed in the second column.
The third column lists the percentage identity (% I) between aligned
sequences of the target and the most homologous structure partner.
The next column gives the structural similarity of the predicted
structure compared with the correct structure, as measured by q
values (Eq. 3). Organisms from top to bottom are: Pseudomonas
aeruginosa, Rhodospirillum rubrum, Desulfovibrio vulgaris, Bacil-
lus subtilis, Lactobacterium casei, Clostridium MP, and Escherichia
coli. DHFR, dehydrofolate reductase.
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target protein, the 25 most homologous proteins were chosen
as memory proteins, excluding proteins having more than
40%o sequence identity with the target protein. For our data
base, this cutoff represented the start of the region where
sequence homology did not necessarily mean structural sim-
ilarity.

Structural similarities were based on q scores.

qTAl = [N(N - 1)]41 2I (ru - rA.,) [31

is the q score for target T and memory ,u. q scores in excess
of 0.4 indicate structural similarity. This cutoff corresponds
to rms deviations generally less than 6 A. With this criterion,
31 of the target proteins had at least one memory that was
structurally similar. These constituted the initial target set.
One seeks a universal y that incorporates correlations

present over the entire data set yet is independent of the
coordinates ofthe target structure. We employed ajack-knife
method, averaging A and B over the set of target proteins
excluding the one to be predicted.
The encodings were obtained for the purpose of carrying

out determinations of structures using molecular dynamics,
but a simpler screening method can be used. If the correctly
folded state is close to the configuration of at least one of the
memory proteins, we can calculate the energy of the protein
in the configuration corresponding to each of the memory
proteins in turn. The lowest-energy structure represents the
prediction.
The global code based on hydrophobicity performs excel-

lently for the 17 P-sheet and mixed-category proteins, choos-
ing a correct structure 94% of the time for both functional
forms of y, failing only for plastocyanin (Brookhaven PDB
code 5PCY). The a-helical performance was poorer, with a
structurally similar memory protein chosen for only 64% or
71% of the target proteins, with the 'y based on simple
hydrophobicity or hydrophobicity/proximity, respectively. A
values tend to be lower in this class. Even with the a-helical
proteins, this screening method was superior to the assump-
tion that the most homologous protein was structurally
similar, which is true for only 43% of the a-helical targets.

Table 2. Predictions of twilight zone proteins
PDB %I q

1FDH(G)
1HDS(A)
1HDS(B)
1MBA
2CRO
2HHB(A)
2HHB(B)
2LH4
2LHB
351C
SMBN

lF19(H)
lF19(L)
2FB4(H)
2FBJ(L)
3HFM(H)
3HFM(L)
3HLA(B)
4FAB(H)
4FAB(L)

a-helix
22.90
18.80
24.80
23.60
16.40
21.80
25.00
23.60
18.80
22.20
25.00

13-sheet
24.70
24.90
25.00
25.00
23.60
23.90
24.70
24.90
22.50

0.56
0.61
0.78
0.53
0.46
0.50
0.81
0.53
0.13
0.30
0.70

0.44
0.44
0.46
0.50
0.42
0.30
0.65
0.54
0.41

There exist algorithms to assign proteins to structural
class. Because of the distinction seen between the a-helical
class and the others, we optimized independently for each
class, using only memory proteins corresponding to the class
of the target. Excluding examples of different structural
classes increases the number of target proteins with a struc-
tural similarity in the memory set to 44. The division into
classes considerably improves the performance. With dis-
tance-independent encodings, the success rate is 80% in the
a-helical class, 94%o in the P-sheet class, and 100% in the
mixed-category class. As can be seen in Table 1, when the y
code incorporating hydrophobicity and proximity is applied,
one obtains a 100%o-correct assignment of the protein to a
structural homolog in all categories. The 3-sheet proteins
have especially favorable values of Tf/Ts. Assignment can be
done even when the % sequence identity is as low as 16.4%,
as witnessed by the Cro protein (2CRO).
Most of the targets in this set had a sequence identity of

30-401% with a structurally similar memory protein. To see
how much homology is actually required for this screening
method, we eliminated from the memory set all stuctrally
similar proteins with more than 25% homology with the
target. Twenty proteins still had structurally similar proteins
in their respective structural classes. The y values were
optimized for these target sets, again using the jack-knife
method. As shown in Table 2, the screening method yields a
structurally similar protein for 9 of the 11 a-helical proteins
and 8 of the 9 P-sheet ones. For all of the failures except
2LHB, the prediction was still of the same family as the
target.

Simulated An i. Nine proteins with both moderate to
low Tf/Tg, based on structural-class-dependent codes encod-
ing hydrophobicity and proximity, were annealed by molec-
ular dynamics. A simple harmonic backbone containing a and

Table 3. Results of simulated annealing
Predicted

AE Best memory structure

PDB 8E % I q rms q rms
a-helix

2CRO 3.82 16.4 0.46 4.21 0.32 6.06
0.32 6.35

351C 4.98 28.0 0.51 5.43 0.28 5.41
3ICB 10.89 32.3 0.49 3.15 0.40 5.13
SCYT 8.99 40.0 0.79 2.04 0.23 9.95

0.24 10.14
13-sheet

1REI(A) 20.42 30.2 0.69 2.82 0.61 2.68
0.59 3.10

3HLA(B) 17.27 26.5 0.66 2.89 0.59 5.15
SPCY 11.86 25.8 0.55 3.78 0.27 8.61

0.31 7.34
Other

1ALC 13.98 38.7 0.83 1.98 0.47 7.58
0.47 7.81

2SNI(I) 14.06 37.1 0.80 1.64 0.40 5.54
0.41 6.43
0.34 8.72

Results of simulated annealing for nine targets. The Hamiltonian
was based on a y encoding both hydrophobicity and proximity
optimized for the structural class of the target. The PDB desgation
of the protein is listed in column 1. Column 2 lists the value of A =
AE/8E for the target. The next three columns list the degree of
sequence identity of the target with the most homologous structure
partner and the q score and rms deviation of the most similar
example. The last two columns give q scores and rms deviation with
respect to the correct structure. For multiple runs, the results are
listed in increasing order of final energy. Column labels are as in
Table 1.

Results of the screening method to predict structures for proteins
of low (<25%) homology. The column labels are as in Table 1.
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FIG. 1. Predicted structures of 1REI (Left) and 2CRO (Right) compared with their respective native structures. Proteins are colored

identically by sequence number, with the first residue colored red and the last purple.

,1 carbons was used, with identical 'y for all types of inter-
actions. The annealing protocols described in our earlier
paper (19) were used. Each run takes approximately 1 hr on
a CRAY 2 supercomputer. As shown in Table 3, the predic-
tion was topologically similar to the correct structure for 8 of
the 9 targets. Proteins with A values greater than about 12 give
structures of q greater than 0.4. An example from this range
is the variable fragment from a Bence-Jones immunoglobulin
[1REI(A)] with a A value of 20.4 (Fig. 1). The runs with lower
A values still give recognizably correct structures in most
cases. Cro protein from phage 434 has only 16% sequence
identity and a A value of 3.82, yet the prediction and target
structure compare well (Fig. 1).
Some distance matrices for the actual and predicted struc-

tures are shown in Fig. 2. The main elements of the distance
matrix are often quite close, but the prediction has a tendency
to be overcollapsed in places. The only structure that failed

in this set is tuna cytochrome c (5CYT). The predicted
structure has a q of only 0.24. Even here, much of the
topology is preserved (see distance map). Possibly the pat-
tern of amino acid residues around the heme group is not well
represented by the binary hydrophobicity scale.
The errors in prediction often involve violations of stereo-

chemical rules or excluded volume constraints. More de-
tailed backbone models may improve performance.

Conclusion

The results in this paper show that preprocessing of se-
quences by standard alignment methods and code optimiza-
tion using spin-glass theory considerably improves perfor-
mance in predicting protein structure. Two different algo-
rithms for tertiary structure recognition from sequences with
identity in the twilight zone were shown. The screening

FIG. 2. Distance maps for the crystal structure (Left) and the simulated annealing result (Right) for four target proteins. The residue number
index increases from top to bottom and from left to right. A point for a pair of residues whose a carbons are within 10 A is yellow and within
5 A is red. The distance maps show similar features except for 5CYT (PDB code).
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method gives a highly reliable scheme for discriminating
between possible putative structures, especially if the struc-
tural class of the protein can be predetermined. Structure
determination by simulated annealing is also generally suc-
cessful. A most dramatic example is the determination of a
structure of Cro protein, which has only 16% sequence
identity with its closest homologue.

Several further developments are possible. The alignment
method we used was chosen conservatively. The continuing
advances in alignment algorithms should allow even more
efficient prescreenings. It is also very easy to evaluate more
elaborate encodings involving, for example, finer divisions of
amino acids into more classes than merely hydrophobic or
hydrophylic. In addition, any sequences that are highly
homologous to proteins in our example set can be used to
build consensus or composite sequences. The appropriate
weighting of different examples can be approached using the
same optimization techniques.
The optimization approach may also be used for Hamilto-

nians based on feature detection, rather than using prealigned
sequences. Such Hamiltonians more closely resemble phys-
ical reality. The methodology of the random energy approx-
imation may also be used to refine Hamiltonians outside the
associative memory framework. Continued development of
these techniques will allow even greater accuracy in structure
prediction and give insight into the dominant interactions in
folding.
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